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Abstract
Collision detection is essential for many applications in-
volving simulation, behavior and animation. However, it
has been regarded as a computationally demanding task
and is often treated as an advanced feature. Most com-
monly used commercial CAD/CAM packages and high
performance graphics libraries, such as SGI Performer,
provide limited support for collision detection. As users
continue to stretch the capabilities of VRML, collision de-
tection will soon become an indispensable capability for
many applications. In this paper, we present a system for
accelerated and robust collision detection and describe its
interface to VRML browsers. We demonstrate that it is pos-
sible to perform accurate collision detection at interactive
rates in VRML environments composed of large numbers
of complex moving objects.
CR Categories and Subject Descriptors: D.3.2 [Pro-
gramming Languages]:Language/Classifications — Vir-
tual Reality Modeling Language 2.0; I.3.1[Computer
Graphics]: Graphics Systems — Distributed/Network
Graphics; I.5.3[Computer Graphics]: Computational
Geometry and Object Modeling
Additional Key Words and Phrases: Virtual Reality
Modeling Language (VRML), collision detection

1 Introduction

The VRML 2.0 specification calls for collision detection
to be performed between a volume surrounding an avatar’s
viewpoint and the scene geometry. However, this is only a
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small subset of the collision detection functionality useful
to VRML applications. In addition to aiding navigation,
collision detection is pivotal to simulating physics in vir-
tual environments or avatar behaviors in cyberspace [8, 13].
Applications currently under investigation, such as collab-
orative design of CAD/CAM models in distributed virtual
environments, require a realistic simulation that couples
collision detection and dynamic response.

The problem of collision detection has been explored in
the literature of computer graphics, robotics, computational
geometry, computer animation, and physically-based mod-
eling. Numerous approaches based on bounding boxes,
spatial partioning, geometric reasoning, numerical meth-
ods, and analytical methods have been proposed [3, 6, 7].
However, none of these algorithms or systems satisfies the
demanding requirements of general-purpose collision de-
tection in VRML browsers.

Main Contribution: In this paper, we present a system (V-
COLLIDE) for interactive collision detection among arbi-
trary polygonal models undergoing rigid motion in VRML
environments. We unify several techniques from previous
work in large-scale collision detection and hierarchical data
structures [4, 5], and propose a clean integration of the re-
sulting libraries with VRML 2.0 [2]. Our system offers a
practical toolkit for performing interactive and robust col-
lision detection in VRML environments.

Organization: In Section 2 of this paper, we describe the
desired characteristics of a collision detection system for
VRML applications. Section 3 presents the overall system
architecture, drawing from previous methods for collision
detection. We address the interface necessary between the
scene graph and the collision detection system. Section 4
discusses our prototype implementation. We specify a sim-
ple yet complete interface between a browser’s internals
and the collision detection library. We report our prelim-
inary results and analyze the performance of the system.
The paper concludes in section 5 with directions for possi-
ble future work, taking into consideration the evolution we
expect to see in the use of VRML.

Supplemental material for this paper can be found in the     papers/hudsondirectory on the CD-ROM.
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2 Desiderata

Given the performance criteria (speed, functionality and li-
brary interface) imposed by VRML environments, a colli-
sion detection system must be:

� Dynamic – A dynamic scene graph is the core of
VRML 2.0. Not only will the user’s viewpoint move
through the scene, but objects will move, and may ap-
pear or disappear at any time. The data structures for
collision detection need to take this dynamic behav-
ior into account. Efficient maintenance of spatial data
structures in dynamic environments is still an open re-
search topic.

� Interactive – VRML is an interactive environment de-
manding a high frame rate. At a minimum the browser
must perform collision detection between the avatar
and its surrounding environment, but it would also
be advantageous to detect collisions between arbitrary
objects in the scene. Most approaches in the literature
lack the robustness or the real-time performance re-
quired by VRML applications.

� General – A scene will contain objects of arbitrary
topology. We should avoid assumptions about ob-
ject motion (bounds on velocity or acceleration, pre-
defined trajectories), the geometry of objects (convex-
ity, solids, manifolds, other topological constraints),
or the richness and correctness of data structures
(winged-edge representations or “clean” geometry
free of degeneracies). The system itself should be
useful for applications not yet conceived, extendible
to distributed multiuser simulation, and portable.

3 System Architecture

In this section we describe the architecture of V-COLLIDE
and propose a method for the VRML scene graph to control
the collision detection library.

3.1 Hierarchical Approach

Our proposal takes a multi-level approach to the prob-
lem of collision detection, similar to that used in the I-
COLLIDE library [4]. A quick conservative approxima-
tion finds potentially-colliding pairs of objects among the
entire database (using then-body sweep-and-prune algo-
rithm from I-COLLIDE), after which a pairwise test taken
from RAPID [5] determines whether two objects marked
as overlapping actually collided. Figure 1 shows the archi-
tecture of our collision detection library, V-COLLIDE.

The first level of V-COLLIDE computes minimalaxis-
aligned bounding boxes(AABBs) for every object in the
scene. The endpoints of these boxes are sorted into three
lists, one for each coordinate axis. As objects move, these
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Figure 1: The system architecture of V-COLLIDE.

lists must be re-sorted on every frame. We use insertion
sort to take advantage of the expected frame-to-frame co-
herence in object positions. The complexity of performing
this sorting is thus proportional only to the number of mov-
ing objects and the density of the neighborhoods through
which they move. Only pairs of objects whose bounding
boxes overlap in all three dimensions are passed to the pair-
wise test module of the system.

The next level detects pairwise collisions. Our imple-
mentation computes a tree oforiented bounding boxes
(OBBs) for every object, with a box containing the entire
object as the root and boxes only containing one or a very
few primitives as the leaves. To check for collision between
a pair of objects, we can descend their OBB hierarchies to
find any leaf boxes which overlap, and then perform exact
intersection tests between the triangles in the overlapping
leaves. For efficient overlap tests of the boxes, we use the
separating axis theorem [5].

We use the OBB construction method from RAPID. A
top-down recursive approach partitions the primitives in
a box into two sub-boxes, based on the location of their
centers. This partitioning is heuristic, is a lightweight ap-
proach suitable for online computation, and gives reason-
able results for collision detection.

Maintaining spatial hierarchies or partitions over com-
plex, dynamic data is still an open research topic. Rather
than attempting to extend the OBB tree algorithms to han-
dle dynamic data, we concentrate on making OBB tree
construction sufficiently fast that when the contents of a
medium-sized tree change we can afford to destroy and re-
build the tree.

3.2 VRML 2.0 Interface

Collision detection normally deals with geometric contacts
between two distinct objects. The geometric primitives that
make up a single object are fixed in reference to one an-



other, and should not be tested for collision with one an-
other. However, the scene graph of a VRML file does not
give us any such differentiating information. It is impos-
sible to tell how a Group node’s children are related: by
belonging to the same object, by inheriting the same trans-
form for purposes of efficiency, or by some semantic crite-
rion irrelevant to rendering. We propose to use the type
extensibility of VRML 2.0 (the PROTO and EXTERN-
PROTO constructs) to allow a scene graph to specify to
the browser where these divisions between the objects are.

We define the node type CollisionObject; it is similar to
the Collision node in the VRML 2.0 spec, but informs the
browser that the child geometry is a single object. The Col-
lisionObject has an extra eventOut, namedcollideObjects,
that signals which objects it hit atcollideTime. The Colli-
sionObject also has extra eventIns,addIgnoredObjectsand
removeIgnoredObjects, and an associated exposedField,
ignoredObjects. These permit fine control over which pairs
of objects are tested for collisions: a node whosecollide
field is TRUE defaults to testing against all other objects
for collisions, but will ignore those listed in itsignoredOb-
jectsfield.

The URN specification in our EXTERNPROTO (Fig-
ure 2) is a network-wide unique string following the nam-
ing conventions of the URN namespace[12]. It indicates
unambiguously to a browser with a conforming collision
detection implementation that this is our CollisionObject
node, version 1. For browsers that do not recognize
the URN, the alternate implementation of CollisionObject
(Figure 3) is as a Collision node, with the extra fields and
events ignored.

The drawback to embedding this information in the
VRML file, is that using theignoredObjectsfield re-
quires some awkward circumlocutions, shown in Figure 4.
VRML has no facility for forward references, and since we
may haven objects which need to reference one another, it
becomes necessary to nest their declarations up ton levels
deep. The alternative is to use the initialize() method of a
Java script or equivalent functionality to set up theignore-
dObjectsfields when the file is loaded.

4 Implementation

We have developed the V-COLLIDE library and designed
an interface from the library to VRML browsers. A simple
viewing program – not a full-fledged VRML 2.0 browser –
has been used to test the functionality and performance of
our implementation.

4.1 External Interface

Our library interfaces to the browser with a simple API, tai-
lored to expected VRML requirements. This API is given
in Table 1. Each object is added to the collision detection
database by calling colcreateobject(), coladd triangle()

EXTERNPROTO CollisionObject
[ eventIn MFNode addChildren

eventIn MFNode removeChildren
eventIn MFNode addIgnoredObjects
eventIn MFNode removeIgnoredObjects
exposedField MFNode children
exposedField MFNode ignoredObjects
exposedField SFBool collide
field SFVec3f bboxCenter
field SFVec3f bboxSize
field SFNode proxy
eventOut SFTime collideTime
eventOut MFNode collideObjects ]

{ "URN:edu.unc.cs:geom:CollisionObject:1"
"http://www.cs.unc.edu/˜geom/

V_COLLIDE/CollisionObject.wrl" }

Figure 2: EXTERNPROTO for CollisionObject

for each triangle contained in a tessellation, and then
col finish object(). These objects may be CollisionObjects
specified in the scene graph, subobjects created as on-the-
fly optimizations by the browser to spatially partition the
scene geometry, or the radius around the avatar specified
by the currently bound NavigationInfo to detect avatar col-
lisions with the scene.

Calling col finish object() builds (or rebuilds) the OBB
tree. Rebuilding is necessary if the geometry is modified
by calling coladdtriangle(). The interface currently does
not have access to the triangles of an object at a level low
enough to morph or distort portions of the object; if this
is necessary, the browser must call colclearobject() and
rebuild it from scratch.

Once the objects are represented in the collision
detection library’s data structures, the browser calls
col updatetransform() to update the position and rotation
of any object, then coltest() to perform collision detec-
tion. If collision detection is only being used for navi-
gation, as required by the specification, the browser only
needs to check the return value of colreportcollision() to
determine if the movement in that frame occurs without
running into other geometry. If collision detection is be-
ing used for more complex applications, the browser will
have to generatecollideTimeandcollideObjectsevents. To
do this, the browser needs to get the set of reports gener-
ated by colreportcollision() to figure out which pairs of
CollisionObjects actually collided.

Automated handling of LOD or Switch nodes seems to
require pushing scene graph semantics down into the colli-
sion detection routines, at the cost of code complexity. The
future work section sketches possible extensions to the in-
terface for this purpose. A method under the current in-
terface lets the browser “manually” control these nodes:



col open initialize collision detection library
col create object add a collidable object
col add triangle add a triangle to an object
col finish object build the OBB hierarchy for an object
col clear object destroy an object’s geometry
col deleteobject delete a collidable object
col activate turn on collision detection for an object
col deactivate turn off all collision detection for an object
col activate pair turn on collision detection between two objects
col deactivatepair turn off collision detection between two objects
col update transform transform (rigidly) an object
col test perform collision detection
col report collision report collisions

Table 1: Collision Detection Library Interface

make a separate coladdobject() call for each child, and
use coldeactivate() and colactivate() to notify the colli-
sion detection library when the Switch’swhichChoicefield
changes or the LOD moves into a new range. This means
the browser is responsible for synchronizing the pairwise
activation ofall the children of the node. For LOD nodes,
an alternate approach exists: add only the most complex
of the children to the collision detection scheme. This will
only be a computational overhead when a collision or near-
miss occurs, and will benecessaryin physical simulations,
where distant objects use a simple geometry for rendering
but must use fully detailed geometry for their interactions
with other objects.

Every time the VRML scene graph causes the browser
to generate acollide changedevent, the browser will need
to call col activate() or coldeactivate() for the appropriate
objects. Finer control of collision checking may be neces-
sary for more advanced uses. Our collisionObject allows
entities in the scene graph to precisely control which ob-
jects are checked for collision using colactivatepair() and
col deactivatepair().

The browser also needs to take action when a new Navi-
gationInfo node is bound or anavatarSizechangedevent is
generated by the currently bound NavigationInfo. The ob-
ject in the collision detection database that represents the
user’s viewpoint may need to be scaled according to the
avatarSizefield’s first value. This can be done by deleting
the object’s geometry and rebuilding it at the proper size.

4.2 Internals

V-COLLIDE unifies the framework of the I-COLLIDE and
RAPID systems. Then-body “Sweep and Prune” algo-
rithm for filtering collisions among large numbers of ob-
jects sits at the top level of the collision detection routines,
with an oriented bounding box (OBB) hierarchy provid-
ing pairwise exact contact determination for objects under-

neath. I-COLLIDE’s pairwise collision test depends on the
Lin-Canny algorithm for exact collision detection, which
is correct only for convex objects or union(s) of convex
pieces. Decomposing arbitrary models into convex pieces
is difficult; users of packages like I-COLLIDE have had to
do this as a preprocess in the past [9], but this decomposi-
tion is impractical to perform in real-time. RAPID assumes
inputs are triangulated polygonal models. Rather than ex-
tending RAPID’s OBB hierarchy to handle VRML’s cones,
spheres, and cylinders, we require the library caller to tes-
sellate the solids within the (user-specified) tolerance de-
sired for collision detection. It would be possible to extend
V-COLLIDE to handle curved surfaces exactly. However,
this could significantly increase system complexity, as we
would need accurate and robust pairwise tests among all
primitive types – anO(n2) problem. Our goal has been to
keep the system architecture simple and elegant.

4.3 System Performance

There are three concerns when adding an extension to
VRML: rendering speed, memory requirements, and im-
plementation complexity. When no near-collisions occur,
the cost is merely traversals of three lists linear in the Col-
lisionObject complexity of the scene.

Since we did not have source-code access to any VRML
2.0 browsers, it was impossible to perform a test integra-
tion of our library. We have tested the performance of V-
COLLIDE with a stand-alone, multi-body simulation. Sev-
eral polygonal bunny rabbits bounce around inside a cu-
bical volume, with simplistic rules to determine how they
react to collisions with each other and the walls of the sim-
ulation volume. Graph 1 shows how the average frame time
for the simulation is affected by increasing the number of
bunny models in the simulation, keeping all other parame-
ters fixed (including a measure of the “density” of the sim-
ulation). At 50 bunnies, one frame worth of collision detec-



PROTO CollisionObject
[ eventIn MFNode addChildren

eventIn MFNode removeChildren
eventIn MFNode addIgnoredObjects
eventIn MFNode removeIgnoredObjects
exposedField MFNode children []
exposedField MFNode ignoredObjects []
exposedField SFBool collide TRUE
field SFVec3f bboxCenter 0 0 0
field SFVec3f bboxSize -1 -1 -1
field SFNode proxy NULL
eventOut SFTime collideTime
eventOut MFNode collideObjects ] {

Collision {
addChildren IS addChildren
removeChildren IS removeChildren
children IS children
collide IS collide
bboxCenter IS bboxCenter
bboxSize IS bboxSize
proxy IS proxy
collideTime IS collideTime

}

Group {
children IS collideObjects

}

Group {
addChildren IS addIgnoredObjects
removeChildren IS removeIgnoredObjects
children IS ignoredObjects

}
}

Figure 3: PROTO for CollisionObject, stored at
http://www.cs.unc.edu/˜geom/VCOLLIDE/CollisionObject.wrl

DEF FOO CollisionObject {
...
ignoredObjects [

DEF BAR CollisionObject {
...
ignored Objects [ USE FOO ]

}
]

}
USE BAR

Figure 4: Declaring a pair of CollisionObjects which ignore
one another

Figure 5: System performance: linear in number of collisions

tion requires 33 miliseconds (Figure 5). For this graph, we
ran our timing tests on an HP 735/125. Each bunny is com-
prised of 575 triangular faces, meaning our 50-bunny test
contains 28,750 polygons – more than one would expect in
a typical VRML scene. The bunnies move at velocities fast
enough to make the test meaningful.

Our prototype of V-COLLIDE uses considerable
amounts of memory. There are two components to the
memory cost: then-body algorithm, and the pairwise al-
gorithm. Forn-body collision detection, we have an array
of n2 entries that contains between 4 and 30 bytes per en-
try (depending on whether collision detection for the pair
of objects represented by that array entry is active or in-
active), and 118 bytes per object. The pairwise algorithm
currently costs nearly 400 bytes per triangle in the model.

Both of these costs can be reduced. A space-optimized
version of then-body code has the same 118 bytes per ob-
ject, a sparse array requiring between8n and4n2 bytes,
and only a further 21 bytes peractive, overlapping(ap-
proximately colliding) pair of objects. The OBB code can
be made to cost roughly 100 bytes per triangle. These
economies should cause little performance degredation for
the n-body algorithm, and a worst-case 25% slowdown
during the pairwise tests.

The V-COLLIDE prototype grafts together two pieces
of library code; both pieces are well documented and well-
tested by public release to the several user communities.
The interface has been simplified to match the needs of a
VRML browser, so integration should require no knowl-
edge of the underlying code. Some complexity will neces-
sarily be added to a browser interfacing with CollisionOb-
ject nodes, but this should be localized.



4.4 Optimization

The database will sometimes contain CollisionObjects
that are extremely large. Large bounding boxes containing
much empty space unnecessarily degrade the performance
of the n-body algorithm, since they increase the number
of pairwise tests that will be performed. To avoid this, a
browser can attempt to automatically decompose a Colli-
sionObject - or geometry that has not been tagged as be-
longing to a particular CollisionObject - into multiple sub-
objects for collision purposes. We can prevent these sub-
objects from being meaninglessly tested against one an-
other using coldeactivatepair(). To decompose geometry
into CollisionObjects, it is sufficient to note that two Shape
nodes which are not separated by a Transform’s parent are
rigid with respect to one another, and so cannot collide with
one another. Thus, as long as each Transform node belongs
to a different CollisionObject than its siblings, correct col-
lision detection can easily be maintained.

5 Future Work

A modification of the pairwise collision test permits us to
obtain a conservative distance measure between two ob-
jects – at some cost to the speed of the test. This would
enable us to provide a good approximated distance met-
ric that might be more useful in some situations than the
simple approximations commonly used today, such as the
distance between objects’ bounding box centers. (See Ta-
ble 2)

The underlying OBB tree implementation assumes tri-
angulated polygonal models; to handle VRML’s spheres,
cones, and cylinders exactly requires extensions to the code
and API. Reasonable algorithms from the literature per-
form accurate and efficient collision between these primi-
tives. However, adding these extensions would complicate
the exact primitive intersection test module. Alternately,
we could allow the user to specify the error bound and do
a triangulation inside our library, taking advantage of the
known structure of the collision detection algorithm to re-
duce the necessary number of tests.

The time required to build a reasonable OBB hierarchy
is not negligible. We currently pause briefly on loading a
model in order to build its hierarchy; this pause is substan-
tial when model sizes approach the hundreds of thousands
of polygons. (On a 250 MHz R4400 CPU, we need 1.5 sec-
onds to build a tree of 45000 polygons.) Our work would
benefit greatly from faster methods for building these trees
well. It would also be useful to make the data structures
of OBB trees more adaptable, allowing us to more easily
handle changing geometry.

LOD and Switch nodes need to have their child-selection
behavior reported to the collision detection library. It
would be possible to move some of this intelligence down
into the library, in which case the browser would need a

path to tell the collision detection routines which of the
node’s children is currently active, so that it knows which
node to test against. Unfortunately we would be evolving
toward maintaining a copy of the entire scene graph within
the collision detection library.

For each collision, VCOLLIDE reports only the objects
involved. It would be possible to specify which faces of
which geometry nodes were involved in the collision, but
this would increase the memory footprint of our data struc-
tures and would require a more densely scripted environ-
ment.

With distributed simulation or multiuser use of VRML,
distributed protocols come into play [1, 10, 11]. In any sit-
uation without a globally consistent state at all browsers,
collision detection, like any other object-object interaction
mechanism, will have to be given a great deal of thought.
Most schemes proposed for seamlessly distributing VRML
involve a spatial partition. The collision detection system
can be extended to monitor only the local environment,
thus increasing the scalability of simulations.
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